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Abstract This paper gives a critical account on the present
status of the local hardness. We analyze the behavior of hard-
ness related global, local, and nonlocal properties, paying
particular attention to local hardness. Although this reactivity
index has become very useful in predicting the regioselecti-
vity of chemical reactions, the lack of a rigorous definition
in the literature has shown that different approximations can
yield different and sometimes contradictory conclusions. The
present paper tries to provide insights into this controversial
issue, starting from an approximate model of the hardness
kernel and analyzing the features of the different models to
evaluate the local and global hardnesses.

Keywords Density functional theory (DFT) - Conceptual
DFT - Hardness - Hardness kernel - Local hardness

1 Introduction

Conceptual density functional theory (CDFT) [1-3] has been
quite successful in providing rigorous quantitative definitions
for popular qualitative chemical concepts like electronega-
tivity [4], hardness [5,6], and electrophilicity [7,8] as well
as theoretical bases for the associated electronic structure
principles such as the electronegativity equalization principle
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[9-11], the hard-soft acid-base principle [6,12-14], the
maximum hardness principle [15-18], etc. The central quan-
tities of the CDFT are the response functions and they can be
split up into three general groups: global, local, and nonlocal
[1-3].

The global reactivity descriptors are response functions
defined for the whole system (atom/ion/molecule/solid) like
the electronegativity (x) [19], chemical potential (u) [19],
global hardness (n) [20], global softness (S) [20], and elec-
trophilicity (w) [8], which are respectively defined as

(BE) n
x=—u=—\—= ,
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where E, N, and v(F) are the electronic energy, number of
electrons, and external potential, respectively. The chemical
potential has also been written as the Lagrangian multiplier
in the Euler equation of the Hohenberg-Kohn equations

SE
= (_ ) . 4
dp(r) v(P)

In order to know the site selectivity in a molecule through
the behavior of individual atomic sites various local
quantities have been defined, e.g., electronic density, Fukui
function, local hardness, local softness, and local electrophi-
licity. Of course, the most important of them is the electronic
density, p(7) itself, defined as follows:

. (SE S
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The Fukui function, f(¥) [21,22], has been defined to
make a connection between the frontier orbital theory and
DFT:

. {3p() A
1= ( N )u(?> B (51)(7))1\/' ©

A local version of softness, s(#) [23], can also be obtained
as

L (Y (B (ONY -
0= ( s )u(i) B ( IN )u(i)(aﬂ)v@) =15,

(N

Therefore s(7) integrates to S as f (7) is normalized to unity.
In other words f(7) redistributes the global softness to
various parts of the molecule and the global reactivity stems
from the corresponding local behavior, in conformity with
the chemical intuition. In the similar spirit a local electrophi-
licity, w(r), may be defined as [24,25]

o) = of ) (®)

and applying the condensed-to-atom variant [26] of f (¥) viz.,
fi& (@ =+, —, and O referring to nucleophilic, electrophilic,
and radical attacks, respectively) for the kth atom in a mole-
cule, one can have s’ and oy .

Defining a local version of hardness is, however, not that
straightforward and the lack of a rigorous definition has pro-
duced a decrease of its popularity. The first definition of local
hardness, n(7), has been [27,28]

/ Flp()]
Sp(r)8p(r/)

where F[p(7)] is the Hohenberg—Kohn universal functional
[29]. Also, as was pointed out some time ago [27]

2
d(E — Nup) = //3Fv®]

8p(r)op(F ’)
Combining Egs. (9) and (10), one obtains

7')d7’, ©)

(F)8p(F)dFdF'.  (10)

dE — ndN — Ndp = —N/ n(F)8p(F)dF. (11)

Considering now the Taylor series function expansion of the
E and p in terms of v(¥) and N

0E SE L
dE = (—) dN +/ (—_,) Sv(r)dr
3N U(?) SU(F) N

= udN + / p(F)Sv(F)dF  and (12)

(i B\ puirar
w= (BN)U(;)dN+/ ((SU(F))NSU(r)dr

= ndN—i—/f(?)cSv(?)d?. (13)
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Combining Egs. (12) and (11), one gets

du =/n(7)8,0(7)d7+ %/p(?)&)(?)d?. (14)

Thus, analyzing Eq. (14) it is possible to deduce another
expression for n(¥) [27]

o S
= (22 ) . 15
n(r) (8,0(r))v(;) (15)

Comparing Eq. (14) with Eq. (13) and using the definition
of the Fukui function (8p(r) = f(F)dN), one deduces the
relationship between global and local hardness

z/y@ﬁemf (16)

Looking at Egs. (7) and (16), it is easy to deduce the connec-
tion between n(¥) and s(¥)

/ D) (F)dF = 1. a7

Contrary to s (¥) or w(7), Egs. (7) and (8), the simple inte-
gration of n() does not yield the corresponding global quan-
tity, 1. Therefore () cannot be identified as n distributed
over the various parts of the molecule. Actually s (7) should
be considered to be an electronic reactivity index (a mea-
sure of electron fluctuations [23]), whereas 1(#) should be
considered as a nuclear reactivity index [30]. Both () and
s (7) cannot be represented in an unambiguous way within the
same representation. While the former is better explained in
the isomorphic ensemble (F[N, p(7)]), the grand canonical
ensemble (Q[u, v(?)]) is a better option for the latter [31].

Finally, the nonlocal reactivity indices are descriptors that
depend on more than one position of the space, e.g., softness
kernel, hardness kernel, and linear response function. The
softness kernel, s (? N ), provides the following response [32]

_— 8p(r)
s(r, r ) = ——
Su(r’)

and it is connected with the linear response function,

X (7 , ?’), with the following relationship [32]

. Sp(r) o S(Ps(F
X(r,r) = ((Sv(;/))Nz—s(r,r)—i-%, (19)

The “inverse” of the softness kernel is the hardness kernel,
n(F, 7'), defined as

u(@)=v() —n (18)

- Su()  82F[p#

n(F 7)) =— “(f,) = q[p( 2,] , (20)
Sp(r')  8p(r)dp(r’)

and the link connecting both nonlocal properties is

/ s@. 7 0@ FdE = 5(F - 7). @1)

In the present article we will analyze the behaviour of
the hardness related global, local, and nonlocal properties,
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paying particular attention to n(¥), due to its controversial
character in the literature [33-36]. Although this reactivity
index has become very useful predicting the regioselectivity
of chemical reactions [37-51], the lack of a rigorous defini-
tion has the consequence that different approximations can
yield different and sometimes contradictory conclusions [33—
36,52-60]. The present article will try to give insight into this
controversial issue, starting from an approximate model of
the hardness kernel and analyzing the features of the different
models to evaluate the local and global hardnesses.

2 Discussion

One of the main problems attributed to the expression of the
hardness kernel in Eq. (15) is the dependency between
the density and the external potential [33,43,58]. Note that
the well-known expression [see Eq. (4)] for the chemical
potential is formally analogous to Eq. (15). Another problem
of Eq. (15) is that it cannot be easily evaluated, stressing
the relevance of the definition of the local hardness given in
Eq. (9). However this expression also has been a source of
controversy, because the p () / N of the Eq. (9) can be repla-
ced by any normalized function [ A(p(F))dr = 1[33,52,61],
e.g., the Fukui function

" SEF[p@®] oy o

Then, two computable expressions of n(7) are given,
Egs. (9) and (22), and two expressions for 1 are obtained
applying these two definitions of 7(¥) to Eq. (16). Finally
Harbola et al. [33] propose that if the exact F[p(?)] is used
in Eq. (22), n(#) is constant and equal to n

— 7\ — 82F[p(7)] AW

In conclusion, following the literature, given a model for
the hardness kernel, two [Eqs. (9) and (22)] and three [Eqs. (9)
and (22) applied to Eq. (16) and Eq. (23)] definitions of
the local and global hardness are obtained, respectively. To
analyze the different features of these n(7) and n defini-
tions, a model of (? S ) is required, which will be evaluated
using the following approximated Hohenberg—Kohn univer-
sal function

Fl[p(] = To[p®)] + Ta[p()] + I [p(F)] + Ex[p()]
+Ec[p)]. (24)

where Ty [,0 (17)] is the Thomas—Fermi functional [62,63],

= . 3 2/3
1] = Cx [ pP@F Cx=5(3) "L @)

T>[p(F)] is the 1/9th of the Weizsicker functional, T;, [ 0(F) ]
[64],

Vo)

Dp()] = G

dr, (26)

J[p] is the classical Coulomb repulsion energy,

//p(r)p didr 27

Ex|[p(¥)] is the Dirac exchange functional [65],

J[p(#] =

- . 3 1/3
Ex[p(®]=—Cx / pPRdr cx=—(377)", @)
47
and Ec[p(¥)] is a Wigner-type local correlation functional
[66],

Ec[p()] =—

/ 0.0466%3(¥) 29

1404580131

Using this approximate model of F [,0(7)] in Eq. (20),
one gets the following n (7 7 ) [for a summary of functional
derivatives see Appendix A of the Ref. [1], while a detailed
derivation of the Weizsicker functional term can be found in
the Appendix]:

ooy 2
’7(”/)25

P B8 (F - 7)
x [SCK —2Cxp~ '3 ()

—0.0466

0.458 4+ 2p~ 13 (¥") ]
(1+0.458p!/3(7)°

V@)W | V2o ) N
= [( o e )
Vo) _ ., . VIS(F —F)
o P
L (30)
F7T

where the first square bracket contains the hardness kernel
contributions from the Thomas-Fermi, Dirac, and Wigner
functions, while the second square bracket is the contribution
of the 1/9th of the Weizsicker functional. Finally, the remai-
ning term of Eq. (30) is the Coulomb contribution. Then, two
n(¥) are obtained employing the previous result in Egs. (9)

n(@) = —p‘/*(r)

. 0.458p3(7) + 2
><|25CK,01/3(r)—2CX—0.0466 P F

(1+0.458p1/3())’

- 1
N =7 31
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and (22) [52]

2 in
0@ = 5 f@p 13@)
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><|:5CK—2CXp_l/3(r)—0.O466 2 )

(140.458p1/3 (7))
! LoD )
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The Eqgs. (31) and (32) can be written in a more compact
way as

n@[p(F)/N] = nro@[p(F')/N]
+nex(P)[p () /N]
+nec)[p(F)/N]+nsF)[p(¥)/N] and
nA[fF)] = nro@®[fF)] +nr2®[ £ ()]
+0ex O[S (F) | HnecO[fF) ]+ £ ()], G4

where the expression between brackets is the normalized
function used to evaluate the local hardness. It is interesting
to note that the right hand sides of Egs. (31) and (32) are local
and according to Harbola et al. [33] when the exact functio-
nal F [p(?)] is used in Eq. (22), the equivalent of the local
hardness of Eq. (32) becomes constant in all the positions
of the space and equal to the global hardness. This equality
of n and n(#) indicates a hardness equalization [33,67] a 1a
Sanderson [9-11,19] (electronegativity equalization) and it
implies a geometric mean principle for hardness [67,68], a
companion to the principles of geometric mean of electrone-
gativities [9-11,19] and arithmetic mean of softnesses of the
isolated atoms [69]. As far as we know, the few calculations of
local and global hardnesses using these methodologies repor-
ted in the literature [27,32,36,61,70-72] have shown that
the major contribution is provided by the classical Coulomb
repulsion term, although the kinetic term for some species
can become as important as the Coulombic [70,71]. Since
the exact functional form for F[p(7)] is unknown till date,

a stringent test for the goodness of an approximate F [,0 (7)]

may be envisaged through the constancy of 7(7) especially

when applied to the ground states [33].

On the other hand, another important difference between
these two n(r) is that the contribution of the 1/9th of the
Weizsicker functional in Eq. (31) becomes [for a detailed
derivation of Eqgs. (35) and (36) see the Appendix]

/ 3T p()]

(32)

(33)

soape) )47 =0 (35)
while in Eq. (32) it is
SChlp®)] o 11 [ " (f(?))}
— == dr' = ———=V \Y — .
/ 5@ T =35m0 POV 0w
(36)
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Fig. 1 Local hardness profile parallel to the internuclear axis at a
distance of 1 a.u. of the CO, molecule with n(7) evaluated using Eq. (31)
at B3LYP/6-311++G(2d,2p) level

which will be in general not zero. However, the above quantity
is expected to be small as the homogeneous term [52]
(p(F)/N) in f(F) is the dominating term. Other inhomo-
geneity (gradient) terms are often small [52]. This difference
between Eqs. (33) and (34) stresses the relevance of using
different normalized functions in the local hardness. In addi-
tion, it is worth noting that other authors have noticed that the
contribution arising from the independent-fermion kinetic-
energy functional to the local hardness is null [36,73,74].
To illustrate some of these points the Figs. 1 and 2 display
the n(F) profiles using the Egs. (31) and (32), respectively,
parallel to and at a distance of 1a.u. from the internuclear
axis of the CO, molecule. In these profiles the density of the
highest occupied molecular orbital (HOMO), pgomo (7), has
been used as an approximation of the Fukui function. Firstly,
it is important to remark that both profiles show the Coulom-
bic contribution as the dominant term and that the Thomas—
Fermi contribution is relevant and the remaining terms are

08 o

0.7 =
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Fig. 2 Local hardness profile parallel to the internuclear axis at a
distance of 1 a.u. of the CO, molecule with n(7) evaluated using Eq. (32)
at B3LYP/6-311++G(2d,2p) level and with pgomo () as approximation
of £(7)
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smaller and can be neglected. In addition, both profiles show
that the oxygen regions are harder than the carbon region, but
only n(¥) of Eq. (32) presents a minimum of local hardness
on the carbon. On the other hand, one can see in Fig. 1 that
the difference of n(¥) between the oxygen and the carbon
region is small, where chemical intuition would suggest that
the change in hardness must be larger ( values of the car-
bon and oxygen are 10.0 and 12.2¢V, [6] respectively). In
contrast, the n(7) profile of Eq. (32) displays a clear diffe-
rence between the oxygen regions and the carbon one. These
two figures clearly pinpoint the importance of the normali-
zed function in order to obtain reliable local hardness profiles,
indicating that the inhomogeneity (gradient) terms can be as
essential as the homogeneous term, so that p(¥) / N isnot a
good approximation to f (7). Finally, it is worth noting that
n(#) of Fig. 2 is quite far from being a constant in all posi-
tions of space, although the exact and unknown functional
F[p(7)] has not been used in the Eq. (22).

Furthermore, combining Eqgs. (31) and (32) with Eq. (16),
one obtains two global hardness expressions

2 R R .
=N / f(r)p1/3(r)[5C1<pl/3(f’) —2Cx
0.458p'3(F) +2 ] .
— dr
(14 0.458p'/3())

1 f@e()
N 7 —7|

—0.0466

drdr’ 37
and

= g / A 3 [SCK —2Cxp 37

0.458 +2p~ 137 ] .
dr

—0.0466 3
(140.458p'3 (7))

GG
- A\ A\
/36/)(?) ["(r) (p())}
+ / SO (38)
77

Finally, the last expression of global hardness will be conside-
red by inserting 1(7) of Eq. (9) in Eq. (16), but changing f (¥)
of Eq. (16) for the homogenous term, p(r) / N. Applying the
hardness kernel of Eq. (30), one obtains

n= / FHPpY3F)

9N2

X [scKpW(?)—ch —0.0466

// p(F)p(F
N2 |F =7

0.458p13(F)+2 .
7
(140.458p!/3 (7))’

d rdr’ (39)

In a similar way for the Eqgs. (31) and (32), these equations
can be written in a more compact way as

n[f@. p(F")/N] = nro[ f(). p(F) /N]
+ e[ fF), p(F) /N]
+nec[f @), p(F')/N]
+ns[f@). p(F')/N]. (40)
nO[f @, f(F)] = 0@ [FE). f(7)]
+ o[£ ), £(F)]
+nr2 A f ). f(F)]
+ne A f ), f(7)]
+necA[F@). £(F)]. (41)

and

@ /N, p(F')/N] = nro[p() /N, p(F') /N]
+nex[p(P) /N, p(F)/N]
+nec[p®) /N, p(¥') /N]
+ns[p@ /N, p(F)/N].  (42)

These three expressions of global hardness look quite
similar with the exceptions that different normalized func-
tions [o(F) / N and f(r)] are used and that only the second
one contains a contribution of (the 1/9th of) the Weizsicker
functional. In Table 1, Eqgs. (37)—(39) are evaluated for six
systems [a detailed explanation of the methodology used to
calculate the integrals of the Eqgs. (37)—(39) can be found
in Ref. [72]], where it is worth noting that some of the fea-
tures displayed in the local hardness profiles are recovered.
For instance, the relevance of the Coulombic and Thomas—
Fermi contributions and the crucial role of the selection of the
normalized function in order to obtain accurate global hard-
nesses as it has been noticed by some of the present authors in
avery recentarticle [71]. The [ o (F) /N, p(¥') / N | approxi-
mation predicts that HCI, H,S, and PH3 are harder than HF,
H»,0, and NH3, respectively, which is absolutely contrary to
the experimental hardness values and the chemical intuition.
In contrast, n[ f(F), p(¥')/N] and n[ f (), f(¥')] present
very similar results and they correctly predict the hardness
order for the selected molecules, although we consider the
choice n[ f, f (?’)] to be more consistent because it uses
in both cases the same normalized function. Another point in
favor of Eq. (16) combined with Eq. (22) is that the Egs. (2)
and (16) are connected using twice the chain rule in Eq. (2)
and the fact that the electron-nucleus Coulombic attraction

@ Springer



928

Theor Chem Account (2007) 118:923-930

Table 1 Calculated and experimental hardness for some representative molecules illustrating the relevance of the choice of the normalized function

to obtain the global hardness. All values are in eV

Molecule n[p(F)/N. p(F)/N]*

n[promo @), p(®) /N1’

n[ promo (7). promo ()]

nJs NTo NEx NEc NTotal 1J NTo NEx NEc NTotal NJ NTo nr2  NEx NEc N Total flgxp
HF 30.25 2756 —1.15 —0.02 56.65 2424 696 —-0.70 —-0.02 3048 22.60 849 043 —-096 —-0.03 30.54 22.0
HCI 3537 39.84 —-096 —-0.01 7424 16.18 249 -0.26 -0.01 1839 1342 283 0.16 —-0.56 —-0.02 15.83 16.0
H,O 2541 2090 —-098 —0.02 4531 2024 4.82 —-0.58 —0.02 2446 1993 9.05 0.81 —1.23 —0.04 28.53 19.0
H,S 32.07 3452 -0.88 —-0.01 6570 14.17 1.88 —-0.23 —-0.01 15.82 1244 331 0.28 -0.76 —-0.03 1523 124
NH;3 2131 1543 —-0.84 —-0.02 3589 16.64 330 —-048 —0.02 1945 16.83 649 055 —-1.09 —-0.04 22.74 164
PH;3 2894 29.62 —-0.81 -0.01 57.73 1244 152 -020 -0.01 13.75 11.36 2.81 023 -0.74 —-0.03 13.63 12.0

4 Hardness values calculated from Eq. (39) at B3LYP/6-311++G(2d,2p) level

b Hardness values calculated from Eq. (37) at B3LYP/6-311++G(2d,2p) level, where ppomo (7) has been used as approximation of f ()

¢ Hardness values calculated from Eq. (38) at B3BLYP/6-311++G(2d,2p) level, where ppomo (F) has been used as approximation of f(F)

d The experimental hardness has been evaluated using the approximation lexp — Aexp, Where Iexp and Aexp are the experimental vertical ionization

and electron affinities obtained from Ref. [6]

energy depends linearly on p(¥) [70]

()
n=\-=
IN?/ )

_ / / dp(F) S2E[p()] dp(F) g

IN 5p(?)5p(?/) IN

Flp®] . - .,
//f( )8p< oGy )T

fFnE)dr.

3 Conclusions

Various sources of confusion and misunderstanding concer-
ning the definitions and the working equations of local hard-
ness have been analyzed and put into perspective. Using a
model for the hardness kernel including the Thomas—Fermi
and 1/9th Weizsicker kinetic energy functionals, the Dirac
Exchange functional and a Wigner type correlation functio-
nal together with the classical Coulombic repulsion energy
the relative merits of the various expressions for 1(¥) and n
are highlighted. It has been shown that the selection of a good
normalized function is essential in order to obtain good local
and global hardnesses. Then, taking into account the results
of the present article we suggest that the preferred operatio-
nal equation for n(r) is the Eq. (22), while for n Eq. (16)
combined with Eq. (22) is preferred.

Acknowledgments We are grateful to Professor A. Cedillo for helpful
discussions. We thank BRNS, Mumbai for financial assistance. P.G. is
indebted to the Fund for Scientific Research — Flanders (FWO) and to the
Free University of Brussels (VUB) for continuous support to his group.
M.T. thanks Ministerio de Educacién y Ciencia (MEC, Spain) and the
European Community for financial help through the postdoctoral grants
EX2005-0099 and MEIF-CT-2006-025362, respectively.

@ Springer

Appendix

Given a functional of the form

Flp()]= / (7 2@ Vo), V0@, ... VN (7)) dF
(A.1)

its functional derivative can be evaluated as
SF[p(@)] _ Y ioi

() izzo(_l) Y

o (7. 01, Vo). V@), ... V¥ o))
X - >
A(Vip())
(A.2)

For instance, in the case of the 1/9th of the Weizsicker func-
tional the first derivative becomes

SDlp®] 1]

V() v(ZVﬂ)(?))

o) 12| P2 p(F)
L IVoP)* V20
= — — =2 — . A3
721 p*(P) p(F) (A3

To evaluate the contribution of the 1/9th of the Weizsicker
functional in 7(F, ') it is necessary to remember that any
function can be written in terms of a functional using the
Dirac delta function

STlp®)] _ 1 Vep(®)* _ VEe()
Spep() 72 ap(?’) P2(F) P
X 8(F —F)dF, (A4)
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applying again Eq. (A.2), one finds that

2 2 ()2
o] L[l
Sp(r)dp(r’) 72 p>(r')

which results finally

SZTZ['O(F)] _ i |:(_ |V7/'0(’7/)|2 + V;Z/p(f/))a(?/ . —»)

7

8p(F)ép(F") 36 P (") p2(F')
Vip (7' Vs (7 —7) - VZs(F —F) .
p2(F) p()

(A.6)

To apply the result of the Eq. (A.6) in Egs. (9) and (22), it is
necessary to remember the property of the derivatives of the
Dirac’s delta function (See http://mathworld.wolfram.com/
DeltaFunction.html)

/[xmf(X)]an(X)dx = (—1)”/ w&x)dx.
(A7)

Then, the contribution of the 1/9th Weizsdcker functional in
Eq. (9) becomes

1 Ve | V() v(Vp(?)) ol
36 p%(F) p(F) p(r)
(A.8)
In contrast, in Eq. (22) one obtains
1 IVe@IPFE | V() f ()
36 p3(F) p2(F)
_V(Vp(;)f(r)) —vz(f(f))], (A9)
p=(r) p(r)
which results finally
1| VAP fFE) | V() f ()
36 p3(F) p%(F)
VB Vp(F)Vf(?)}
p(F) p*(F)
11 of S5
S v/ \% , A.10
36 9(7) [p “ (p(?) )} (A0

which expression will be in general not zero.
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